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GPU: Perfect Companion
for Accelerating Apps & A.l.
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Deep Learning Intro
NVIDIA's DIGITS

AGENDA
&

TOPICS - Autoencoding Enhancement
- TensorRT




Intro to Al




ARTIFICIAL NEURONS

Biological neuron Artificial neuron
impulses carried @
toward cell body

branches

dendntes%\({j // g of axon W W

/ axon
nucleus terminals
S —»
impulses carried
away from cell body
cell body
From Stanford cs231n lecture notes

Weights (W
= parameters Y=F (WX +W X, +W3X;3)




ARTIFICIAL NEURAL NETWORK

Hidden layers

Input layer Output layer

Given sufficient training data an artificial neural network can approximate very complex
functions mapping raw data to output decisions
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Raw data

DEEP NEURAL NETWORK (DNN)

Low-level features

Mid-level features

High-level features
TN

| REbAIRIT R

Application components:

Task objective
e.g. ldentify face

Training data
10-100M images

Network architecture
~10s-100s of layers
1B parameters

Learning algorithm
~30 Exaflops
1-30 GPU days



WHAT IS DEEP LEARNING?
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Accomplishing complex goals

ARTIFICIAL
INTELLIGENCE

Early artificial intelligence

MACHINE
LEARNING

DEEP
LEARNING

1950's 1960's 1970’s 1980’'s 1990’s 2000’'s 2010’s




Difference in Workflow

. . . Examples [ Regression and SVMs |
Classic Machine Learning [ 1990 : now ]

Hand
: Model /
Input Designed Mapping Output
Deep/End-to-End Learning [ 2012 : now ] Example [ Conv Net ]

Input Simple Complex Model/ Output

Features Features Mapping

X TX XX
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Traditional Workflow

Classic Machine Learning [ 1990 : now ]

Hand
Input Designed

Model /

Mapping Output

Examples [ Regression and SVMs ]

Challenge in Slack channel: How would you describe this
image to someone (or something) blind?

Difficult: From it’s raw pixels.
Medium: From geometric primitives (lines, curves, colors)
Easy: Using any words that you may know
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Deep Learning Workflow

Experience: Trust Neural Network to learn features and model by providing inputs
and outputs.

Key Skill: Experience (data) creation

Example [ Conv Net ]

Deep/End-to-End Learning [ 2012 : now ]

Simple Complex Model/
Input Features Features Mapping Output

LSCISCENG K]
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NVIDIA’S DIGITS




NVIDIA’S DIGITS

Simplifies common deep learning tasks such as:
Managing data
Designing and training neural networks on multi-GPU systems

Monitoring performance in real time with advanced visualizations

Completely interactive so data scientists can focus on designing and training
networks rather than programming and debugging

Open source
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NVIDIA’S DIGITS

Interactive Deep Learning GPU Training System

Process Data Configure DNN Monitor Progress Visualization

New Image Classification Model
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DIGITS - MODEL

New Object Detection Model New Image Classification
Define
Solver Options Data Transformations
Training e:ochs 2] Subtract Mean @ t C u Sto m
) = layers

Snapshot interval (in epochs) @ Crop Size @

‘ with

Validation interval (in epochs) @ Python Layers @

Python Layers @ ; Pyt h O n server-side file @

Select Dataset
Select Dataset @ ©

server-side file @
Random seed @
Use client-side file

Use client-side file
Batch size @ multiples allowed

Batch Accumulation @

e anneal
Stochastic gradient descent (SGD) v

Base Learning Rate @ multiples allowed t h e
0.01

L
Show advanced learning rate options l< a rn ] n g
ra te Standard Networks Previous Networks Pretrained Ne

Standard Networks Previous Networks Prefrained Networks Custom Network _—
Caffe Torch
Network Details
Network Details Intended image size
LeNet original paper [1998]

Model

Solver Options
Training epochs @

30

Snapshot interval (in epochs) @

1

Validation interval (in epochs) @
1
Random seed @
Batch size @ multiples allowed

Batch Accumulation @

Solvertype @

Stochastic gradient descent (SGD) v
Base Learning Rate @ multiples allovred
001

Show advanced learning rate options

tWOrks Custom Network

Intended image size

28x28 (gray)

Data Transformations
Subtract Mean @

Image

Crop Size @

Differences may exist between model taské
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DIGITS - VISUALIZATION RESULTS

Summary

Output visualizations

Layer visualizations

Description

ndatau

Activation

"conv1"

Weights (Convol

11.712 learned parameters

Statistics Visualization

Data shape: [ 1 256 256]
Mean: 3.27138
Std deviation: 75.5979

Data shape: [96 1 11 11]
Mean: 0.0
Std deviation: 0.0

] 0.00 05
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ENHANCING IMAGES WITH AN Al
AUTOENCODER



A great candidate for Deep Learning!

INPUT X
N7

ONOPOFe

FUNETEION f:

O OO0

v
OUTPUT f(x)



Training Set of images.

« It requires pairs of noisy and noise-free
images. The network will learn to
remove the noise from the images.

 We can then deploy this trained model
to any image we want to denoise.
T _ (inference)

:1>samp»l’e per plxélﬁ

BIR*AV2014]
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Deep Learning for Image Denoising

Training

Training Trained Neural Inferencing
Data Network

Collect
lamhes Trained
Add o : network Apply trained
Tralnlngfc?rr:]grc;gsresgon detects network to noisy
g noise and images

Noise to
training
images reconstructs

23



Learning about images (CNN)

Raw data Low-level features Mid-level features High-level features
TN
- - ‘
.?; oy 0[: g
-
H ey g & ;’.

Application components:

Task objective
e.g. ldentify face

Training data
10-100M images

Network architecture
~10s-100s of layers
1B parameters

Learning algorithm

~30 Exaflops
1-30 GPU days
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Autoencoder — Iin Action
















TensorRT

SOF TWARE INFERENCING PERFROMANCE
EHANCEMENT



NVIDIA DEEP LEARNING SOFTWARE PLATFORM

S - D,

Data Management Embedded

|

Trained Neural
Network

)

r™

Training
Data

Training

Model Assessment

Data center

NVIDIA DEEP LEARNING SDK

developer.nvidia.com/deep-learning-software 30



NVIDIA TensorRT

High-performance deep learning inference for production
deployment

High performance neural network inference engine
for production deployment

Generate optimized and deployment-ready models for
datacenter, embedded and automotive platforms

Deliver high-performance, low-latency inference demanded
by real-time services

Deploy faster, more responsive and memory efficient deep
learning applications with INT8 and FP16 optimized
precision support

developer.nvidia.com/tensorrt

Images/Second

Up to 36x More Image/sec

7,000
m CPU-Only

m Tesla P40 + TensorRT (FP32)
6,000 mTesla P40 + TensorRT (INT8)

5,000
4,000
3,000
2,000

1,000

2 8 128
Batch Size

Googlenet, CPU-only vs Tesla P40 + TensorRT
CPU: 1 socket E4 2690 v4 @2.6 GHz, HT-on 31
GPU: 2 socket E5-2698 v3 @2.3 GHz, HT off, 1 P40 card in the box



TENSORRT

Image Classification (AlexNet, GoogleNet, VGG, ResNet)
Object Detection
Segmentation

RNN/LSTM
3D convolutions
Custom user layers

32



TENSORRT

Convolution: Currently only 2D convolutions
Activation: RelLU, tanh and sigmoid

Pooling: max and average

Scale: similar to Caffe Power layer (shift+scale*x)"p
ElementWise: sum, product or max of two tensors
LRN: cross-channel only

Fully-connected: with or without bias

SoftMax: cross-channel only

Deconvolution
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TENSORRT

Workflow

W

- OPTIMIZATION
Training Framework NEURAL USING TensorRT PLAN USING TensorRT

NETWORK

RUNTIME

C 1 34
developer.nvidia.com/tensorrt



TENSORRT

Optimizations

* Fuse network layers

O - Eliminate concatenation layers OPTIMIZED
» Kernel specialization INFERENCE
» Auto-tuning for target platform RUNTIME

TRAINED * Tuned for given batch size

NEURAL NETWORK

"

- 35
developer.nvidia.com/tensorrt



GRAPH OPTIMIZATION

Unoptimized network

next input

relu relu

bias bias

3x3 conv. 5x5 conv. 1x1 conv.

max pool

1x1 conv.
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GRAPH OPTIMIZATION

Vertical fusion

next input

5x5 CBR 1x1 CBR

max pool
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GRAPH OPTIMIZATION

Horizontal fusion

5x5 CBR 1x1 CBR

/

next input

1x1 CBR max pool




PERFORMANCE

Up To 3x More Images/sec with INT8
Precision

mFP32 mINT8

7000
6000

e

S 5000

Q

£ 4000

6

23000

£

= 2000
1000

0
2 4 128

Batch Size

INT8 PRECISION

—_—

MB

-

Memory

New in TensorRT

Deploy 2x Larger Models with INT8
Precision

1400
1200
1000
800
600
400
200
0

mFP32 mINT8

2 4 128

Batch Size

% Accuracy

Deliver full accuracy with INT8
precision
100%

mFP32 mINT8
80%
60%
40%

20%

0%

Top 1
Accuracy

Top 5
Accuracy

GoogLenet, FP32 vs INT8 precision + TensorRT on
Tesla P40 GPU, 2 Socket Haswell E5-2698 v3@2.3GHz with HT off




THANK YOU
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