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1. Abstract 
The Digital Body Development System (DBDS) is a $10.6 million 4 year NIST ATP project to shorten the time to launch 

vehicles by improving the launch problem solving process.  The project is based on two concepts: virtual functional build, and an 
intelligent agent based decision support system.  This paper presents a novel architecture for the decision support system that 
streamlines the launch process through the integration of a virtual assembly simulation, problem identification, and solution generation 
and evaluation. Following the virtual functional build process, the architecture deploys a number of multi-agent systems to provide 
system functionality, such as problem knowledge retrieval, solution generation, modification, and evaluation.  The project is co-
funded by a consortium of 14 organizations, which have filed for their first patent based on this novel technology.  

2. Introduction 
The car body is one of the most important vehicle systems.  In terms of vehicle model launch it can be considered the most 

important vehicle system as   
1. it is often the bottleneck during launch,  
2. it is often the most costly system (powertrain costs can be spread across multiple programs),  
3. platform development and capital investment costs limit the car manufacturer’s ability to introduce new models (model 

must run for a certain length of time to recoup investment), and   
4. it is the first system the customer sees when first considering a vehicle for purchase.   

While many efforts have been focused in improving product design, relatively few efforts have been focused on improving 
vehicle launch, specifically as it pertains to the body.  Increasing body quality during launch results in increased customer satisfaction.  
A recent study of 14 vehicles found a strong correlation between body gaps and flush around the doors and customer satisfaction in fit 
and finish as measured by J D Power Initial Quality Survey [1].   

Thus, the DBDS focuses primarily on the vehicle launch process, which includes die tryout and assembly system validation (see 
Figure 1).   

Figure 1.  Auto Body Development Cycle 
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Detailed engineering design of individual parts and components begins following design freeze.  This typically includes a finite 

element analysis (FEA) of the nominal design to examine stresses, vibration, crash testing, etc., as well as a tolerance analysis to 
determine how the components will fit.  This latter analysis often involves identifying designs that are sensitive to variation and 
making the design more robust by changing and redesigning parts to reduce geometric effects.  Once the individual part design is set, 
it is released for “tooling” (tool release – i.e. the process of constructing the stamping dies), and the functional build process begins. 

Functional build is a critical process in launching a vehicle, whereby individual prototype parts are stamped and then sent to a 
central location to be assembled into a prototype vehicle body [2].  Since production tooling is often not yet available, the body is 
fastened with screws and rivets, hence it is called a “screwbody.”  The screwbody is examined by experienced experts who must 
decide whether gaps and interference conditions between individual parts are sufficient to warrant changing the dies, the welding 
tooling, clamp locations, etc.  If it is decided that a change is warranted, then the dies may have to be returned to the supplier to be 
changed.  If a change is not warranted, then the specifications may be changed to match the part shape.  This usually involves a uni- or 
bi-directional opening of the part tolerances.  The process is then repeated after the changes have been implemented.  It is not 
uncommon to have three or more functional build evaluation bodies during a vehicle launch, which is costly and time consuming.   



The next evolution of functional build is virtual functional build (VFB).  A key enabling technology is optical measurement 
technology.  There are a variety of technologies ranging from laser scanners, such as Perceptron’s ScanWorks, to white light systems, 
such as Cognitens’ Opticell, and holographic systems, such as Coherix’s ShaPix.  These technologies provide precise part 
representations in virtual form.  Stamped parts exhibit significant physical differences from their CAD nominals due to factors in the 
tooling and forming processes, which is why the optical data is so critical.  Rather than sending physical parts to a central location to 
be assembled, suppliers optically measure their parts and send the virtual part representation to a central web site.  The virtual parts are 
then assembled, and the problem areas are identified.  The major advantage of virtual assembly is one is freed from logistical 
requirements of having all parts sent to a central location at a scheduled time.  Coordinating the timing and shipment of up to 30 
different suppliers and hundreds of different parts is extremely difficult.  Also, the screwbody process itself takes generally 4 to 6 
weeks to complete.  If critical parts are delayed, then the build can be further delayed.  VFB can be completed in a far shorter amount 
of time.  Assembling the virtual part representations is much faster than physically placing parts in fixtures and riveting or screwing 
the parts together.   Furthermore, any part that has not yet been manufactured may be replaced by its CAD nominal as a best guess for 
what the part will look like.  Virtual functional build saves the time and cost of assembling a physical prototype, and allows users to 
create many more virtual prototypes than physical prototypes.  This is particularly important during the iterative die tryout process.  
The capability to quickly evaluate the effect of a die change on the body assembly is a functional evaluation of the part, as opposed to 
a pure specification based evaluation.   

VFB is in its infancy, and there are many process issues that must be addressed, such as purpose of the VFB, information 
requirements prior to measurement, fixturing requirements, etc.  For example, is the purpose of the measurement to check the part 
dimensions relative to their CAD nominal dimensions, or is the purpose to determine whether the part will cause a problem during 
assembly?  The answer to this question may affect how one fixtures the part.  If the purpose is to compare the part relative to part 
nominal, then one might want to fixture the part in as free a state as possible while still ensuring repeatable results.  A comparison of 
the virtual part with the CAD nominal file would show where dies might need to be adjusted to achieve a better part.  If the purpose is 
to determine assemblability, then one might want to fixture the part as it would be in the assembly tooling (i.e., completely 
overconstrainted).  Displaying parts in body position would then show gap and interference conditions as one would expect to see 
during assembly.   

However, VFB as described above is not able to predict the dimensional quality of the assembly.  Even in the previous example, 
where the virtual parts are placed in body position, one would not be able to predict the dimensions of the resulting assembly, because 
simple visualization cannot account for the springback that occurs after welding and the tooling clamps are released.  This requires the 
integration of tolerance analysis and FEA simulation.  Most tolerance analysis models are Monte Carlo simulation based and assume 
rigid parts, i.e., the assembly process does not affect the dimensional quality of the parts, which we know is not true of body assembly.  
Tolerance analysis models begin with a nominal representation of the parts and assembly tooling, apply manufacturing variation to the 
part and tooling features (from design specifications or actual manufacturing data), simulate the assembly process in the appropriate 
sequence, and output the desired measurements.  The output is typically a distribution and a sensitivity analysis for each measurement.  
Integration of FEA models allows the tolerance simulation to take elastic deformation of the parts induced by spot welding into 
account.  The software typically does not account for plastic deformation, and hence heat distortion effects from welding are not 
modeled.  Conceptually, the parts are assembled in the software. Weld points are identified and the parts are forced into full contact at 
those points. These points are held as boundary conditions.  Then the FEA program minimizes the stress in the assembly by changing 
the shape of the part according to the boundary conditions.    

Several groups have developed a joint FEA-dimensional variation simulation engine: General Motors (GM) has developed one 
for internal use; Dessault Systems released such an engine in Catia V5 product; and UGS PLM has incorporated this functionality in 
their VisVSA V5.1 product.  Future versions of the software will be able to predict the amount of residual stress in a functional build 
assembly. 

With these new optical measurement and simulation tools it is possible to virtually assemble and predict dimensional quality 
including variation.  Thus, engineers will have a tool to understand dimensional problems with actual body parts during launch.  
Despite the large opportunity to improve timing and reduce cost through these two technologies, many of these gains will be difficult 
to achieve due to the following: 

1. System complexity: Designers will need to make decisions in concert.  Any decision made on one part could have an 
impact on other adjoining parts.  For example, a change on a rear reinforcement rail to ensure it will assemble with a 
rocker panel can also impact how the rail fits with the wheel housing.   

2. Excessive Engineering Change Orders (ECOs): There are too many ECOs due to a lack of understanding by product 
designers of what design features and changes to design features will have a true impact on the assembly of individual 
parts, as well as the function of the assembly itself.  A better understanding of the impact of design changes on 
manufactured assemblies and their variation should lead to a significant reduction in ECOs, a common disruption to a 
smooth and timely vehicle launch.   

3. Experiential decision making: Current decision making processes in functional build (whether physical or virtual) are 
based on the experience and memory of individuals who have participated in previous programs.  This experience 
requires years of hands-on practice with die making, welding, and hand assembly of panels; a knowledge base that is 
rare and becoming rarer as a large portion of the work force reaches retirement.  The quality and speed of decision-
making can be drastically improved through data or a quantitative understanding of cause and effect relationships in the 
system.   



4. Communication and coordination of supply chain: Too much time and cost is wasted on tooling buyoff and part 
validation due to unpredicted manufacturing variation, poor communication between suppliers and the customer, and 
lack of available information. 

5. Distributed knowledge: Effective solutions to problems and their cost and time impact on the program is generally 
distributed in the supply base.  It is difficult to identify the suppliers with the pertinent knowledge and evaluate the 
tradeoffs between competing knowledge. 

The DBDS, will overcome many of these problems by helping engineers identify and evaluate solution alternatives based on 
proven historical cases.  DBDS closes the design loop during the manufacturing validation phase, using functional build concepts.  
The DBDS builds upon the knowledge and experience gained during vehicle launch programs and applies them to simulated assembly 
models based on actual scanned parts.   

3. The DBDS 
The Digital Body Development System (DBDS) is depicted in the blue box in the lower half of Figure 2 and consists of 3 major 

subsystems: 
1. Data Preparation and Repository Module (DPRM)  
2. Virtual Assembly and Simulation Engine (VASE). 
3. Solution Generation and Evaluation Module (SGEM)  
 

Figure 2.  Schematic of Digital Body Development System 
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The system begins by collecting information in the Data Preparation and Repository Module (DPRM).  The module acts as a 

central collection facility for all data in the system.  It checks for data consistency and formatting before sending the data onto VASE 
or allowing other parts of the system to access the data.  It also houses the database of historical problem-solution cases, which is used 
by the SGEM.  In addition, the DPRM contains a set of project management and communication tools to aid in coordinating the 
product validation and launch process among the various suppliers and the OEM.   

The VASE then simulates the assembly function and generates dimensional and residual stress distributions for specified 
measurements across the vehicle body.  UGS PLM VisVSA V5.1 is the VASE used in the DBDS.  Generally there will be several 
hundred assembly measurements (simulation outputs) per vehicle.  These simulation results are then sent to the Solution Generation 
and Evaluation Module (SGEM).   

The SGEM groups problems that have similar characteristics, such as measurement location, measurement type and direction, 
and common parts involved in the measurements, into problem areas.  The problem areas are then ranked according to the problem 
magnitudes as well as the relationship between problems.  Examples of problem relationships are problems that have the same part 
supplier, or passed through the same assembly steps.  These relationships are similar to hypotheses of root causes.   

The purpose of the grouping and ranking is  
1. to reduce the problem space and identify the critical problems that will drive the solution generation and evaluation 

module.   
2. begin to introduce information that relates problems to root causes.   



Using a database of past solutions structured according to problem relevance criteria, an agent based case retrieval network 
(CRN) is used to identify the best solution to the given problem areas.  These solutions are sent to the VASE and automatically 
implemented in the model to evaluate their functional effectiveness with regards to dimensional quality and residual stress. The 
system continues to iterate on various solutions using local change rules to modify solutions until it finds solutions that satisfy the 
design requirements.   

The DBDS does not explicitly determine the root cause of the system.  Instead, the root causes are implicitly embedded in the 
problem area groupings, the relationships between problem areas, and the relevance edges in the CRN.  The SGEM looks for the 
solutions that best map to the causal structure.  In essence, one is looking for the best solution that maps into the problem 
characteristics under the assumption that problems with the same underlying causal structure have the same root cause, or at least, can 
be resolved by the same solution.   

The DBDS is intended to be used iteratively throughout the vehicle program.  For example, every time a die is created or 
modified, such as during prototype, die tryout at the die source, and die tryout on the home line, the system would be invoked (see 
Figure 2).  Scanned part images would be sent to the DPRM and converted to a format suitable for use by the VASE.  Simulating the 
scanned part files, instead of the nominal CAD files would provide information on the effectiveness of die changes and need or lack of 
need for further changes.  The DBDS would determine whether additional changes are necessary, what they should be, and their 
expected outcome on the assembly as determined from simulation. 

4. Adaptive Heuristic Search 
DBDS treats the generation of solutions to problems identified in the current design as a search problem in the high-dimensional 

space of possible modifications to the design guided by a fitness function. Any point in this abstract search space is a set of 
parameterized changes to the current design. Computing the fitness of such a set of changes requires the application of these changes 
to the design, and the simulation and analysis of the resulting new design comparing it with the current design. 

In [3] Brueckner and Parunak present an experimental application of their agent-based Adaptive Parameter Search Environment 
(APSE), which performs a heuristic parallel search across an abstract space of input parameters to an arbitrary simulation model 
guided by a fitness function defined over metrics reported during the execution of the model. DBDS is an application and extension of 
APSE in which sets of design changes are treated as input parameters to the virtual assembly of a car body and in which the search is 
guided by the design intent of the functional build process. 

The Solution Generation and Evaluation (SGE) module of the DBDS hosts an APSE search agent population, whose task it is to 
explore the space of possible changes to the base design for improvements that reduce or remove the problems observed in its 
execution. Thus, the changes to the base design are input parameters to a black-box simulation and a predefined fitness function 
measures the degree to which the now modified design meets the design intent. 

The APSE search agents collaboratively explore the space of potential solutions (model parameters) and evaluate them through 
successive simulation runs. Using a Particle Swarm Optimization (PSO) algorithm [6] combined with probabilistic local hill climbing, 
the agents coordinate their activity so that computing resources (simulation runs) are focused on exploring the most promising regions 
of the search space. 

Given the complexity and massiveness of the search space that DBDS must explore in a given optimization run, the heuristic of 
the APSE search agents was enhanced.  While Search agents in APSE are guided only by the fitness of the currently known solution 
candidates (points in the abstract search space), DBDS provides two additional sources of guidance for the distributed search (see 
Figure 3). The first source of solution candidates is the human design team. At any point during the search process, human experts 
may look at the problem symptoms and the solutions DBDS has explored so far and suggest another solution to the system. Solutions 
may also be suggested by the solver, a multi-agent system that seeks to match the problem symptoms to the descriptor of solution 
cases recorded in a case base (see Section 5).  The retrieval is guided by the problem symptoms observed in the execution of the 
current design and by the fitness of solutions that have already been evaluated by the Search agents. 

Figure 3.  DBDS Performs a Parallel Heuristic Search with Human and Case-Based Guidance 
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These two additional sources of creativity were incorporated into the search process by enhancing the APSE search agents’ 

behavior. In APSE, an agent explores the search space through a series of short-range moves that are guided by hill-climbing and PSO 
heuristics. In DBDS, a Search agent monitors the performance of its short-range movement heuristic (rate of improvement over time) 
and may decide to abandon its current region in search space through a long-range jump beyond the local correlation distance of the 
fitness function. The destination of the jump is a solution candidate provided by the human design team or the case-based solver. 
Figure 4 illustrates the emerging agent trajectory in an abstract search space. 



Fig. 4. Agents move and jump through the search space guided by local heuristic, human input, and case knowledge 
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The generic distinction between a local improvement heuristic and global jumps to externally suggested solution candidates is 

open to other solution approaches. Just as DBDS currently implements a case-based approach to the solution of problems with the 
base design, other (e.g., rule-based, model-based, etc.) approaches could be implemented independently and feed into the decision 
process of the Search agents. 

5. Swarming Case Retrieval 
Today’s car body development process heavily depends on human expert knowledge and experience. With DBDS we create a 

decision support system that has the ability to discover new solutions on its own through a heuristic search and evaluation in 
simulation, while at the same time utilizing and capturing human creativity and expertise to move from experience-based to data-
driven design. 

The SGE module of DBDS includes a dynamic solver that analyzes problems with the base design as they manifest themselves 
in observable symptoms during the virtual assembly and that suggests solutions to these problems drawn from a set of problem-
solution cases. The solver is integrated with the heuristic search process by suggesting solution candidates to the APSE search agents 
for their next long-range jumps and by modifying the case retrieval process based on the fitness of the solutions that have already been 
explored (Figure 6). 

Fig. 6. The dynamic solver modifies the solution candidates that it suggests to the Search agents based on the progress of the 
exploration of the search space 
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The ongoing asynchronous interaction with the Search agents and the continuous addition of fitness evaluations of new solution 

candidates requires a dynamic update of the case retrieval. This led to an agent-based any-time approach that continuously integrates 
changes in the external circumstances without having to restart its reasoning process from scratch. 

The following details of the operation of the solver top down. First, the adaptive any-time process that manipulates the 
description of the current problem symptoms to provide a high-quality retrieval of high-performance solutions will be presented. This 
is followed by a description of the specific internal mechanics of the fine-grained agent system that drives the adaptive modification of 
the current problem description. 

5.1. Linking Emergent Clustering and Spreading Activation Case Retrieval 
The virtual assembly of the base design by the VASE module results in a large set of uniquely identified measurement points on 

the assembled car body that are either within or outside specified tolerances. Just as a fever, a cough and a runny nose are possible 
symptoms of an underlying viral infection, so are patterns of deviations at pre-defined measurement points on a (virtually) assembled 
car body symptoms of specific underlying problems (root causes) with the design. 

The dynamic solver seeks to match the currently observed symptomatic patterns to those of problems encountered in the past, 
whose solution is recorded in the case base.  The case base is organized into a simplified Case Retrieval Network (CRN) [7], which 
represents basic components of the problem description and the associated solution as individual nodes in a spreading activation 
network. The nodes representing problem components are called Information Entity (IE) nodes and a solution is stored in a so-called 



Case node. All IE nodes that describe the problem solved in a specific solution case are linked to the respective Case node through 
weighted relevance edges. The retrieval process first places an activation onto individual IE nodes depending on their match to the 
current problem symptoms and then propagates the activation through the relevance edges to the Case nodes. The relative activation of 
the individual Case nodes provides an ordering of the recorded solutions with respect to their relevance to the current problem. 

The goal is to abstract away from the specific locations and count of measurement points provided by the simulation by 
identifying symptomatic regions on the virtual car body that may be expressions of the same underlying problem. For instance, if a 
door is set slightly off-center into its frame, one may find several disconnected regions along the frame in which pre-defined 
measurements are out of tolerance (e.g., gaps, interferences). To that end, the solver executes a fine-grained multi-agent system that 
continuously rearranges measurement points into clusters that form components of the problem signature (Figure 7). The currently 
emerging problem signature is matched against past problems’ signatures in the case base to provide a relevance measure of the 
available solutions. This relevance measure guides the selection of the next solution candidate upon request of an APSE search agent. 
A case is then selected probabilistically, based on its current normalized relevance. 

Fig. 7. Clustering of Measurement Points into Signature Components  
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The quality of the case retrieval process is high if there is only one case (or very few cases) with a significant probability to be 

selected. Otherwise, a case may as well be randomly selected from the entire case base. The current retrieval quality is determined 
from the Case Selection Entropy (CSE) metric, which is the Shannon (Information) Entropy [11] of the case selection probabilities. 
The current CSE, resulting from the interaction of the current arrangement of measurement points with the Case Retrieval Network, 
may modify the behavior of the agents in the next clustering cycle.  Similar entropy measures defined over the current preferences of 
an autonomous decision maker (here case selection) have been used before [4, 9] to estimate the current information these preferences 
actually convey and to subsequently adapt the decision process if necessary. 

Figure 8 illustrates the tight feedback loop (black) between the ongoing clustering of measurement points and the current case 
relevance ordering provided by the CRN. Through this feedback, the identified problem regions are modified to match past experience 
recorded in the case base more closely while maintaining a close tie with the actual problems observed in the simulation. 

 
Fig. 8. Adaptive Case Retrieval Guided by Retrieval Quality and Solution Performance. 
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The clustering process is also influenced on a larger time scale by the observed performance of solutions that have been explored 

by the APSE search agents (white loop in Figure 8). If a solution case is adopted by a Search agent in a long-range jump, DBDS 
evaluates the fitness of the changed car body design in terms of the reduction in problems compared to the base design and the 
estimated cost in implementing these changes. The fitness of all solution candidates proposed by the solver is fed back through the 
CRN (activating case nodes and spreading to IE nodes) to attract the clustering mechanism away from or towards specific 
arrangements. 

5.2. Emergent Clustering 
The output of the simulation is a cloud of values for predefined measurement points. Each point is associated with geometric 

coordinates on the car body, but it also carries additional context values, such as part features with which it is associated, assembly 
process steps that came in contact with the part, or the supplier providing the part. Thus, a measurement point is located in a high-



dimensional space that combines the geometric and context dimensions. Through the additional context, points that are related in the 
process but not necessarily in geometry can be associated to the same signature component. 

The goal is to start from the original locations of the measurement points and rearrange the points into arbitrary clusters while 
trying to keep each point close to its original location. As Figure 9 illustrates, there are a number of possible arrangements that meet 
these qualitative objectives, as there is no prior assumption on the particular number or size of clusters. The emergent clustering 
algorithm is designed to potentially visit all these arrangements (with varying probability), and the feedback from the Case Selection 
Entropy metric and the currently known solution fitness push the clustering system out of unfavorable configurations. 

Fig. 1. Possible Cluster Arrangements (black) for the same Original Measurement Points (white). 

 
Emergent any-time clustering is one of the prime examples of emerging functionality through stigmergic coordination in large-

scale fine-grained multi-agent systems. Nest sorting [2], is an instance of emergent clustering observed in social insect systems. In this 
case, independent agents (ants) pick up or drop off passive objects with a dynamically computed probability. This behavior has been 
replicated in collective robotics (see for instance [5]). An alternative approach to clustering is to give the initiative to the objects 
themselves, which then reason about their current local arrangement and move about in space. Parunak, et al. successfully applied this 
approach to create large-scale, self-organizing document bases [10] and the approach was applied here as well. 

Fig. 10. Forces represent agent objectives in clustering  
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In the emergent adaptive clustering algorithm, each point is assigned an agent, which moves through the space of geometric 

locations and additional context. The sum of two dynamic force vectors, representing the two objectives in the rearrangement, 
determines the trajectory of an agent. The first force vector (“Home Force” in Figure 10) attracts the agent back to the original 
location of the measurement point. This force increases with distance. The second force vector is the sum of individual component 
vectors (“Cluster Force” in Figure 10), which each attract the agent to the location of another nearby agent. The strength of this force 
decreases with distance. The rates in which the forces change for changing distances are dynamic parameters of the system. In each 
cycle, each agent calculates the home force and the cluster force vector from the position of the agents in the previous cycle. The 
vector sum of these two forces determines the direction into which the agent relocates in this step. The length of the step is the length 
of the combined vector, but limited to a relatively small step-length value (see Figure 11). 

Fig. 11. Iterative Local Force Vector Calculation 
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If the force calculation algorithm in the agent were deterministic and used only constant scaling parameters, then the system 
would quickly stabilize on one arrangement that minimizes the “tension” among the objectives. To avoid unstable minima and to 
explore a variety of nearby cluster configurations, we add a small random component to the individual relocation calculation. 

Qualitatively different cluster configurations are obtained through the feedback of the current retrieval quality and the solution 
performance, encoded in the Case Selection Entropy (CSE) and the fitness of solution cases (see Section 5.1). 

The CSE metric offers a global evaluation of the value of the current point arrangement for the high-quality (non-random) 
retrieval of a solution from the case base, but it does not provide any guidance on how the arrangement should be changed to achieve a 
higher retrieval quality. Since higher CSE values correspond to low retrieval quality, exploration of new configurations over the 
exploitation of current clusters are encouraged by increasing the impact of the random component in the agents’ trajectory calculations. 

The fitness of solution cases that have been explored by the APSE search agents can be translated into directional guidance for 
the clustering agents. Before each cycle of the emergent clustering algorithm, the fitness of all cases (zero if not yet explored) is 
propagated backwards through the CRN to the IE nodes that represent regions of high point concentration (clusters) recorded with 
these past cases. Solution cases that led to an improvement in the design communicate a positive activation to their IE’s while those 
that actually made the problem worse send a negative activation. 

The positive or negative activation of IE’s in the Case Retrieval Network translates to additional attractive or repulsive force 
components that steer points towards or away from regions in measurement space.  Lenz, et al. applied a similar back-propagation 
approach in CRN’s to guide the interactive diagnosis of failures in computer hardware [8]. 

6. Conclusion 
Car body development is the most costly step in the launch of a new vehicle and even small improvements of this process may 

yield high gains for the automotive industry. This paper presents the Digital Body Development System (DBDS) – a decision support 
system for the car body development team – which is an extension of the agent-based Adaptive Parameter Search Environment 
(APSE) presented in [3]. DBDS is based on a modular architecture, which makes the required activities of the evaluation of the fitness 
of solution candidates (simulation, cost estimate) transparent for the APSE search agents exploring the space of changes to the current 
design of the car body. 

The primary extension of APSE, besides its application to a highly complex domain, is the integration of external guidance into 
the local search heuristic of the agents. DBDS enhances the decision process of the individual agent.  The enhanced agent tracks the 
performance of the local improvement process (moves) and decides whether to abandon its current region (jump) in favor of solution 
candidates suggested either by the human design team or a novel adaptive case-based solver. 

The case-based solver is a complex adaptive system that interacts with the APSE search agent population, providing it with 
solution candidates that may address currently observed design problems and adjusting its recommendations based on the fitness of 
the solutions that have been explored already. The solver links a fine-grained agent system that continuously modifies the description 
of the current problem with a Case Retrieval Network that records solutions to past problems. The retrieval of solutions is refined by 
the agents’ modification of the problem description, driven by the currently estimated quality of the case retrieval and the performance 
of selected cases. 

The DBDS is the focus of an ongoing NIST/ATP-supported Joint Venture of 14 organizations: Altarum Institute, American 
Tooling Center, Atlas Tool Inc., Autodie International, Center for Automotive Research, Cognitens Inc., ComauPico, UGS PLM, Ford 
Motor Co., General Motors Corp., Perceptron Inc., Riviera Tool Co., Sekely Industries, Thunder Bay Pattern Works. The architecture 
and algorithms reported in this paper are currently being implemented and tested and quantitative results from our first prototype will 
be forthcoming soon. 
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