COGNITIVE SAFETY SYSTEMS

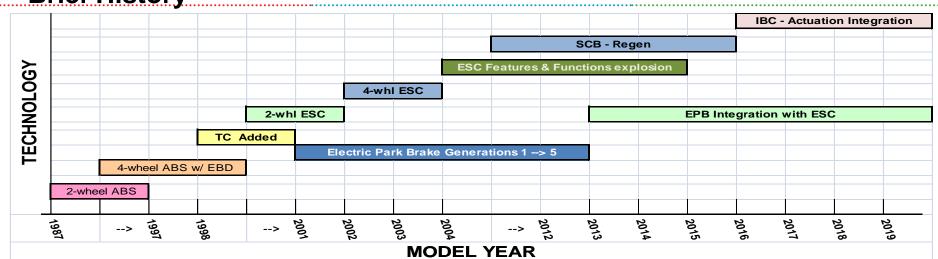
CAR Breakfast Briefing

TRW Systems Engineering - Slip Control Systems

Deron Littlejohn 25Mar14

ADVANCED THINKING / SMART THINKING / GREEN THINKING

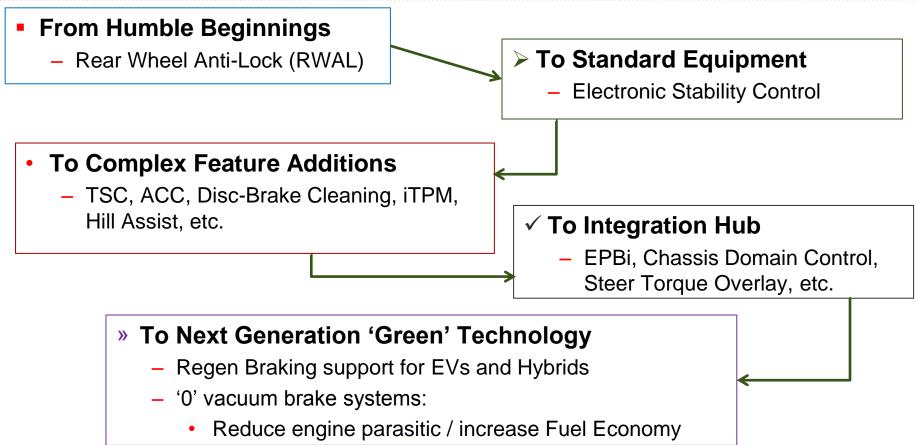
TRW – Slip Control Systems Background



What are "Slip Control Systems"

- Electronically controlled elements of today's automotive brake systems that provide safety and convenience features such as:
 - Anti-Lock Braking (ABS)
 - Electronic Stability Control (ESC)
 - Traction Control (TC)
 - Adaptive Cruise Control (ACC)
 - Regenerative Brake Blending Systems (RBS) {EVs & Hybrids}
 - Hill Descent Control (HDC)
 - Etc.....
- As all of these systems control the pressure being applied to each of the vehicle wheels, they dynamically control the 'Slip' of each wheel.

TRW – Slip Control Systems Brief History



Trends

TRW – Slip Control Systems Systems Engineering Challenges

What are the Challenges Today?

- 1. Growing levels of functionality
 - NCAP / Collision Mitigation expectations
 - □ Hosting of OEM / 3rd party software
 - Processing power and memory continue exponential trend
 <u>Multi-core uP with 8Mbytes of ROM by 2019</u>
 - Support of fault tolerant 'Semi or Fully' Autonomous Driving
- 2. Increasing Standardizations and Safety Requirements
 - Growth in AUTOSAR adoption standard software modules
 - Process adherence Automotive SPICE
 - □ ISO 26262 ASIL-D system compliance

TRW – Slip Control Systems Systems Engineering Challenges

What are the Challenges Today?

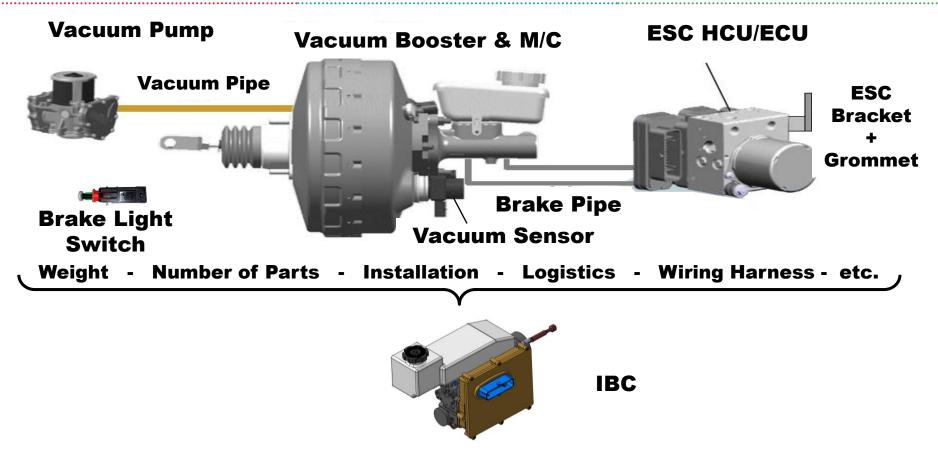
- 3. Requirements Capturing / Decomposition
 - Multiple formats from Customer base
 - Various levels of detail / completeness
 - Insufficient internal requirements captured to 'link' to.
- 4. Bi-lateral Traceability
 - Present systems not compatible with the concept
 - Lack of original decomposition difficult to now insert 'back'
 - □ Not enough experience yet to determine the right fidelity of detail
 - > Ex: every line of code?

TRW – Slip Control Systems Systems Engineering Challenges

What are the Challenges Today?

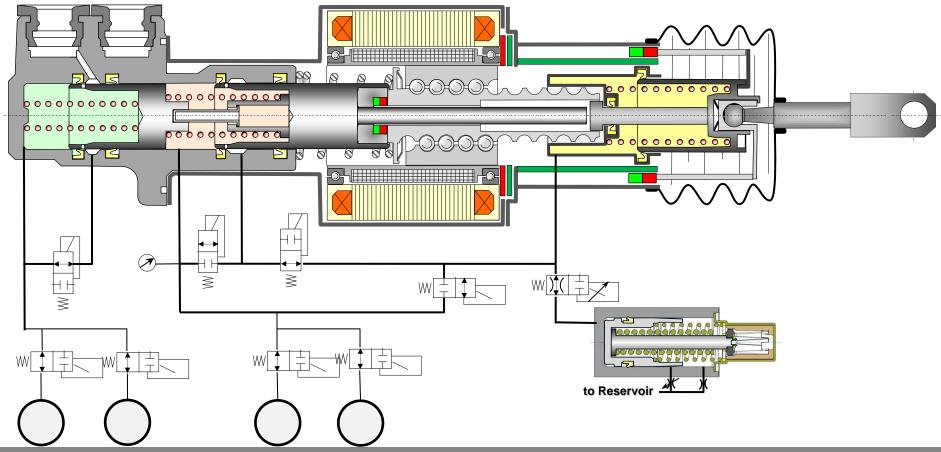
- 5. Lessons Learned Feedback / Incorporation
 - Back into the Requirements / Design documents
 - Across to other similar projects
 - Forward to new projects
- 6. Employee Training / Knowledge / Experience
 - Present culture of career rotation
 - The Next Generation Transition:

The 'Old Guard / Tribal Knowledge' vs. The 'Transitionals / Mobile Connected'



What is coming next?

- Industry desires a system that is
 - Vacuum independent
 - Fast Pressure Apply Dynamics {NCAP / Collision Mitigation}
 - Seamless pressure control {Stop-N-Go ACC, etc.}
 - World class pedal feel
 - Support for EVs & Hybrids
 - Fully Fault Tolerant / High Quality / No issues
 - Scalable for all known functions
 - Ability to host 'black box' OEM software
 - ≻ Etc.


TRW – Slip Control Systems Integrated Brake Controls (IBC)

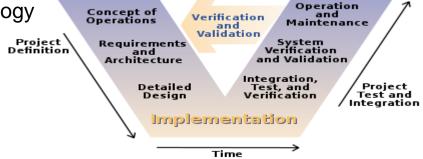
TRW – Slip Control Systems Integrated Brake Control (IBC)

How Does TRW Design / Develop such Systems?

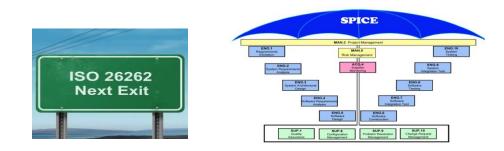
- 1. Strong Systems Engineering Organization and Culture
- 2. Cross Discipline Engineer Development
- **3**. High use of analysis tools in the process
- 4. Tight communications between Component Engineering and Systems Design
- 5. Global Operation

TRW – Slip Control Systems Systems Engineering Process

Cross Discipline Engineer Development


- Systems Design Staff comprised of engineers from various educational backgrounds:
 - Mechanical Engineers
 - Electrical Engineers
 - Control Systems Engineers
 - Software Engineers
- Cross Discipline work assignments are encouraged:
 - Mechanical Engineers writing software
 - Electrical Engineers designing motors / valves
 - System Analysis Engineers from all disciplines

TRW – Slip Control Systems Systems Engineering Process


What is the TRW Design / Development Process?

1. Utilizes the traditional 'V'-cycle methodology

- 2. Today's emphasis is to comply with the industry process standards:
 - 1. Automotive Spice
 - 2. ISO 26262 {Safety products}
 - 3. AUTOSAR interfaces

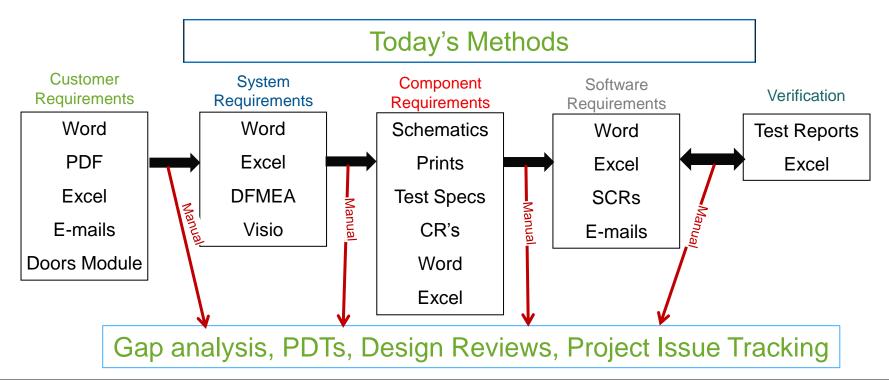
TRW – Slip Control Systems Analysis Tools / Process

- Simulation / Software-In-the-Loop, Hardware-In-the-Loop Verification tools

HIL Rigs	
----------	--

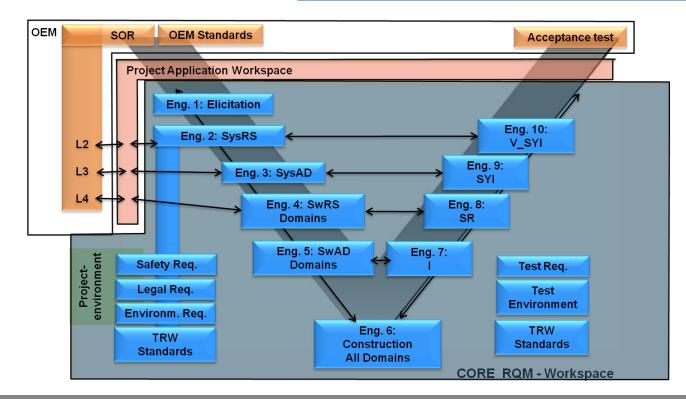
Predicting ESC performance

			SL	C (Lef	t/Right	t Max R	oll Ang	gle)			
	WB_3400	0 NM_370	WB_2800	0 NM_370	WB_385	0 NM_370	WB_340	0 NM_430	WB_340	0 NM_370	
Speed (KPH)	ESP ON	ESP OFF	ESP ON	ESP OFF	ESP ON	ESP OFF	ESP ON	ESP OFF	ESP ON	ESP OFF	
85	1.3/1.2	1.3/1.3	1.3/1.3	1.3/1.3	1.2/1.2	1.3/1.3	1.2/1.2	1.3/1.3	1.2/1.2	1.3/1.3	
90	1.3/1.3	1.4/1.4	1.3/1.3	1.3/1.3	1.2/1.2	1.4/1.4	1.3/1.3	1.4/1.4	1.3/1.3	1.4/1.4	
95	1.3/1.3	1.4/1.4	1.4/1.4	1.4/1.4	1.3/1.3	1.4/1.4	1.3/1.3	1.4/1.4	1.3/1.3	1.4/1.4	LVW
100	1.3/1.4	1.4/1.4	1.4/1.4	1.4/1.4	1.3/1.4	1.4/1.4	1.3/1.4	1.4/1.4	1.3/1.3	1.4/1.4	≤
105	1.4/1.4	1.5/1.5	1.4/1.4	1.5/1.5	1.4/1.4	1.5/1.5	1.3/1.4	1.5/1.5	1.4/1.5	1.5/1.5	
80	4.8/4.8	4.9/4.9	4.9/4.9	5.2/5.2	4.7/4.7	4.8/4.8	4.9/4.8	4.9/4.9	4.9/4.8	4.9/4.9	
85	5/5	5/5	5.1/5.1	5.1/5.1	4.9/4.9	5/5	5/5	5/5	5/5	5/5	6
90	5.1/5.2	5.5/5.5	5.2/5.2	7.5/6.4	5.1/5	5.4/5.5	5.1/5.1	5.5/5.5	5.1/5.1	5.5/5.5	Ŷ
95	5.2/5.2	9.4/8.7	5.3/5.3	R/16.1	5.1/5.2	6.4/6.4	5.2/5.2	9.4/8.7	5.2/5.2	9.4/8.7	Ŵ
100	5.3/5.3	15.3/11.2	5.3/5.4	R/R	5.2/5.2	9.7/9	5.3/5.3	15.8/11.1	5.3/5.3	15.3/11.2	
60	6.1/6.2	6.4/6.4	5.8/5.8	6.3/6.3	6.2/6.2	6.5/6.5	6.1/6.1	6.4/6.4	6.1/6.1	6.4/6.4	-
65	6.5/6.3	8.6/8.6	6.8/6.8	8.7/8.7	6.3/6.3	8.4/8.4	6.5/6.4	8.7/8.6	6.4/6.4	8.7/8.6	동
70	7/7.4	15.2/14.4	7.3/7.2	20.6/20.1	7.4/7.4	12/11.7	7.2/7.2	15/14.2	7.4/7.3	15.2/14.4	×
75	7.9/7.8	19.1/18	7.9/8.6	R/R	8.5/8.5	15/13.9	7.9/7.8	19/17.9	8/7.8	19.1/17.9	2
	6AMT								5MT		


For Unique vehicles with complex variant configurations

TRW – Slip Control Systems Systems Engineering Process – Requirements Management

The Biggest Challenges:


1) Requirements Capture 2) Requirements Decomposition 3) Bi-lateral Traceability

TRW – Slip Control Systems Systems Engineering Process – Requirements Management

Tomorrow's Methods?

A Fully Integrated Database?

TRW – Slip Control Systems Systems Engineering Process – Tool Chain Needs

What are TRW Expectations of the Tool Chain?

Not practical that the OEM's / Tier 1's will commonize to a single tool chain

Tools must remain flexible and maintain ability to work with data / databases already developed

- Mimic the Instrumentation / CAD tools progression
 - Concentrate on the information structures
 - Maintain 'Open' architectures
 - Develop common interfaces

Converting / Linking between tool chains will be a must!

TRW Systems Engineering

 Efficient use of cross-discipline engineering analysis, design & verification processes to deliver increasingly robust safety systems to the Global Automotive environment.

