AUTOMOTIVE FUELS AND EMISSIONS: Policies, Compliance & Potential Impact on Future Technologies

Stuart Johnson
Senior Manager, Engineering and Environmental Office, Volkswagen Group of America

CAR Briefing December 5, 2013
<table>
<thead>
<tr>
<th>AGENDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the VW Group</td>
</tr>
<tr>
<td>Global regulatory situation</td>
</tr>
<tr>
<td>Brief overview of Tier 3 proposed regulation and US regulations</td>
</tr>
<tr>
<td>Volkswagen Group engine strategy</td>
</tr>
<tr>
<td>Gasoline engines</td>
</tr>
<tr>
<td>Diesel engines</td>
</tr>
<tr>
<td>Engine strategy summary</td>
</tr>
<tr>
<td>Transmission strategy</td>
</tr>
<tr>
<td>DCT, automatic transmissions and electric drive gearbox developments</td>
</tr>
<tr>
<td>Electric Drive Strategy</td>
</tr>
<tr>
<td>Hybrids, PHEVs, BEVs</td>
</tr>
<tr>
<td>Fuel Policy</td>
</tr>
<tr>
<td>Market fuels and alternative fuels</td>
</tr>
<tr>
<td>Summary of Tier 3 impact</td>
</tr>
</tbody>
</table>
VW GROUP PRODUCTS: NINE INDEPENDENT BRANDS

<table>
<thead>
<tr>
<th>Automotive Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Cars</td>
</tr>
<tr>
<td>Remaining companies</td>
</tr>
</tbody>
</table>

- Volkswagen
- Audi
- Škoda
- SEAT
- Bentley
- Bugatti
- Lamborghini
- Porsche
- Ducati
Volkswagen Group targeting 10 million units per year Worldwide in 2018

20% of Worldwide Volkswagen sales comply with US Standards for emissions, the remaining 80% comply with ECE
OVERVIEW OF US LEGISLATION

CO2 (Green-house gas + CAFE)
- **Agency**: EPA, NHTSA, CARB
- **California + Sec.177**

Emissions (Federal: TIER, California: LEV Low Emission Vehicle)
- **Agency**: EPA, CARB
- **California + Sec.177**

ZEV (Zero Emission Vehicle)
- **Agency**: CARB
- **California + ZEV States**

EPA
- **Tier 2**
- **Tier 3 (with Phase in)**
- **LEV II**
- **LEV III (with Phase in)**

CARB
- **ZEV I**
- **ZEV II**

National GHG / CAFE Legislation
- **2014**
- **2015**
- **2016**
- **2017**
- **2018**
- **2019**
- **2020**
- **2021**
- **2022**
- **2023**
- **2024**
- **2025**

National GHG/ CAFE regulation
- **2040 = 0 gram CO₂**

VW has to fulfil ZEV Legislation from 2018
TIER 3/LEV III FLEET AVERAGE PHASE-IN

Fleet average NMOG+NOx (g/Mile)

Tier 2 / LEV II Registration still possible

LEV II

LEV III / Tier 3

NMOG = Non-Methane Organic Gas
With extended warranty of 150k Miles / 15 years of emission relevant parts, agencies grant a bonus of 5mg/Miles. For example SULEV30 turns to SULEV25 because of that for the fleet calculation.
The NPRM (Notice of Proposed Rule Making) is 1450 pages

- FUL (Full Useful Life) extended from 120K to 150 K
- More stringent FUL SFTP standards
 - SFTP = Supplemental Federal Test Procedures – two additional test cycles for “off-cycle” emissions
 - US06 test cycle for high speed/high load
 - SC03 for air conditioning testing/micro-transients
 - Option for fleet average NMOG + NOX with similar FTP compliance curve
- New “Zero” evaporative emission standards
 - Fleet average compliance to very low whole vehicle emission levels
 - New canister bleed test to check evaporative emission system
- Lower PM standards on both the FTP (3mg/mile) and the US06 cycle (10 mg/mile)
 - Potential measurement/compliance issue
 - Potential disagreement with California – FTP (1mg/mile), US06 (4 mg/mile)
- Part 1066: New CFR section to handle revised testing and measurement techniques
- New certification fuel with ethanol content
- New market fuel with reduced sulfur

MANY ADDITIONAL ASPECTS TO THE TIER 3 REGULATION!!!
US TEST CYCLES

2 Cycle test

Used for:
- CAFE mpg targets
- NMOG + NOx FTP fleet average
- GHG fleet average

5 Cycle test

Used for:
- Monroney sticker (EPA mileage)
- NMOG + NOx SFTP average (excluding FTP-Cold Ambient Cycle)
Three engines will be central to VW Group powertrain strategy – all four cylinder engines

- Recently developed for worldwide deployment
- Modular construction and adaptable to various emissions concepts
- Two gasoline engines, one diesel engine
- All three have direct injection, turbocharging and innovative valve timing/actuation
TECHNOLOGIES: EA 211 ENGINE

CO$_2$-optimization - iAGK cylinder head

4-valve cylinder head
- Integral exhaust manifold
- Cross-flow cooling
- 5 mm valve guide
- Faster engine heat-up
- Faster cabin heat up
- Reduction of exhaust temperature by 100 K
- Reduction of fuel consumption by up to 2l / 100km at Top Speed
TECHNOLOGIES: EA 211 ENGINE

Cylinder shutdown - Rocker cover module

Assembly & function

• Installed space compatible with basic version
• Double-pin actuators for cylinders 2/3
• Inlet and exhaust camshaft adjusters
• Integral HDP drive
• Integral water pump drive
• Splined shafts and cam sections manufactured by VW
• Anti-friction bearing on drive side
• Reduced braking torque when coasting
• Engine start-stop function when vehicle is at a standstill
TECHNOLOGIES (EA 888) – Roadmap for direct injected engines
TECHNOLOGIES EA 888: US VOLUME VERSION

Thermostat
- Integrated Exhaust Manifold: significant Increase of customer mpg
- 200 bar High Pressure Injection
- Weight reduction on turbine housing
- Electric wastegate

Cylinder Head
- Simple Exhaust Camshaft
- Intake Manifold without MPI Injectors

US-specific Components
To be updated with future stringency of GHG Rules

Lightweight Crank
- Thinwall crankcase
- Plastic lower oil pan
- Crankshaft with 4 counterweights
- Aluminum Screws

Friction Reduction
- Balance shaft roller bearing
- Smaller main bearings
- Reduced Oil pressure level
- Reduced tensioner forces

Crankcase
- Thinwall crankcase
- Plastic lower oil pan
- Crankshaft with 4 counterweights
- Aluminum Screws
THE MODULES OF THE EA 288 TIER 3 ENGINE

Modules basic engine

- HP EGR w/o cooler (channel through cylinder head)
- Variable valve train (VVT)
- Cylinder pressure control 2nd generation
- 2000 bar high-pressure injection system

Modules exhaust gas aftertreatment

- Close-coupled NO\textsubscript{x} aftertreatment
DUAL-CIRCUIT EXHAUST GAS RECIRCULATION - COMPONENTS

- Intake manifold with integrated intercooler
- HP EGR valve
- Air control valve
- HP EGR channel
- LP EGR
- LP EGR cooler
VVT CONCEPT – PORTS AND VALVES IN ROTATED POSITION
VVT OPERATING MODE - VALVE TIMING

Variable camshaft

Fixed camshaft

Adjustment range max. 50° crank angle

Valve lift

BDC TDC
HIGH-PRESSURE INJECTION SYSTEM - INJECTOR

- Max. injection pressure 2000 bar
- Mini rail
- 3-part welded nozzle needle with close-to-seat guide
- Nano blind hole

- Nano blind hole
- Close-to-seat guide
- Mini rail
- 3-part welded nozzle needle
THE MODULES OF THE TIER 3 EA-288 ENGINE

Modules basic engine

Modules exhaust gas aftertreatment

NOx raw emissions - 40%

Scaleable emissions aftertreatment for various levels up to EU 6.2 and LEV III/ Tier 3
CLOSE COUPLED EXHAUST GAS AFTERTREATMENT

Tier 3 exhaust system design with Selective Catalytic Reduction (SCR)

- NOx sensor
- Lambda sensor
- Temperature sensor T4
- Temperature sensor T6
- Differential pressure sensor LP-EGR
- SCR dosing module (water-cooled)
- Oxidation catalyst
- Mixer
- Diesel particulate filter with SCR coating
- Cu/Zeolite
DIESEL PARTICULATE FILTER WITH SCR COATING

Characteristics of the integrated component:

- **Cu/Zeolite coating**
- **Filter substrate**

- DPF with optimized porosity
- High SCR washcoat amounts
- Thermally stable SCR coating
- Low exhaust back pressure and high filtration efficiency
DIESEL PARTICULATE FILTER WITH SCR COATING

Development of mixture preparation

- Mixture preparation in transfer tunnel
- Low exhaust back pressure with uniform NH$_3$ distribution
- Avoiding urea deposits
VW Group is converging towards three 4-cylinder concepts as our volume leaders

- EA888, EA211, and EA288 will comprise 95% of volume in the coming years
- Modular design of engines will permit use in multiple markets while meeting local cost targets

New engine technologies are focusing on:

- Reduced weight – up to 30% reduction
- Improvements in friction, and warm-up strategies
- Advanced, cost-effective valve trains
- Advanced turbo-charging with integrated cooling and faster response
- Optimized fuel injection
- Optimized combustion
- Reduced engine out emissions – emissions compliant in all markets
- Reduced CO2 emissions – 10 to 20%
GEARBOX TECHNOLOGIES – CONTINUED DSG DEVELOPMENT

- Cost reduction
- Increase of Efficiency
- Quality Improvement
- Use of Synergies
- Standardization
- CO2 Reduction

Short gear set
Long gear set

MGB

DQ250
DQ500
DQ200
DQ101
DQ231
DQ381
DQ501
Concept Guidelines:

- Successor of 6-speed AQ450-6F/A
- For US market cars Tiguan, B-SUV und CC NF
- Optimized efficiency
- Optimized NVH
- For Gasoline and Diesel Engines
- Torque range from 280 to 500 Nm
GEARBOX TECHNOLOGY: TRANSVERSE AT ≥ 8 Gears, NAR Market

Specification:

<table>
<thead>
<tr>
<th>Aisin AQ 450-8F/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gears</td>
<td>8</td>
</tr>
<tr>
<td>Spread</td>
<td>7,8</td>
</tr>
<tr>
<td>Final drive ratios</td>
<td>3,33 – 2,561</td>
</tr>
<tr>
<td>Max. power</td>
<td>220 kW</td>
</tr>
<tr>
<td>Torque capacity</td>
<td>500Nm</td>
</tr>
<tr>
<td>Weight</td>
<td>95 kg</td>
</tr>
<tr>
<td>Source</td>
<td>Aisin AW</td>
</tr>
<tr>
<td>Expected efficiency improvement</td>
<td>5 - 8 g CO2</td>
</tr>
</tbody>
</table>
GEARBOX TECHNOLOGY: CONSUMER ACCEPTANCE

- DQ200 updates produced **incremental improvements** to overall acceptability: “completely acceptable” scores increase (not significantly) by 6% (from 45% to 51%)

- However, AQ is preferred to DQ200 by U.S. customers (69% “completely acceptable”)

> How **acceptable** would this **transmission** be in a vehicle you would **consider purchasing**?
GEARBOX TECHNOLOGY: DQ400E PHEV TRANSMISSION

Specifications:

- Torque capacity: 400 Nm
- max. ICE-Torque: 350 Nm
- Integrated E-motor and clutch K0
- Oil supply on demand
- 2 circuit hydraulic control (High-/Low pressure)
- Friction optimized
- High efficient synchronizer system
- 6 forward gears
ELECTRIFICATION – VW GROUP HYBRID TOOLBOX

<table>
<thead>
<tr>
<th>Engine</th>
<th>Electric motor</th>
<th>Gearbox</th>
<th>Battery</th>
<th>Power electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-cylinder in-line TDI</td>
<td>HEM 20</td>
<td>DQ200E</td>
<td>HEV</td>
<td></td>
</tr>
<tr>
<td>3-cylinder in-line TSI/TDI</td>
<td>HEM 60</td>
<td></td>
<td></td>
<td>Power electronics</td>
</tr>
<tr>
<td>4-cylinder in-line TSI/TDI</td>
<td>HEM 80</td>
<td>DQ400E</td>
<td>PHEV</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRIFICATION – VW XL1 HYBRID DRIVETRAIN

TDI engine

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>830 cm³</td>
</tr>
<tr>
<td>Output/at rpm</td>
<td>35 kW/4,000 rpm</td>
</tr>
<tr>
<td>Torque/rpm</td>
<td>120 Nm/2,000 rpm</td>
</tr>
<tr>
<td>Weight:</td>
<td>72 kg</td>
</tr>
</tbody>
</table>

Electric motor

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Synchronous, permanent magnet</td>
</tr>
<tr>
<td>Output</td>
<td>20 kW</td>
</tr>
<tr>
<td>Torque</td>
<td>140 Nm</td>
</tr>
<tr>
<td>Weight</td>
<td>30 kg</td>
</tr>
</tbody>
</table>

DSG gearbox

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>7 forward gears</td>
</tr>
<tr>
<td>Clutch</td>
<td>Dry clutch</td>
</tr>
<tr>
<td>Casing</td>
<td>Magnesium casing</td>
</tr>
</tbody>
</table>
VOLKSWAGEN’S APPROACH TO SUSTAINABLE MOBILITY

Renewable energy sources
- CO₂-neutral electricity
- CO₂-neutral fuels

Conventional energy sources
- Petroleum

TSI
TDI
TGI
DSG
TWIN DRIVE
BLUEMOTION
g-tron
e-tron
e-hybrid
Alternative Fuel Development

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid vehicle (PHEV)</td>
<td>Volkswagen XL1</td>
<td>Audi A3 e-tron</td>
</tr>
<tr>
<td></td>
<td>Porsche 918 Spyder</td>
<td>Volkswagen Golf TwinDrive</td>
</tr>
<tr>
<td></td>
<td>Porsche Panamera S E-Hybrid</td>
<td>Volkswagen e-Golf</td>
</tr>
<tr>
<td>Battery vehicle (BEV)</td>
<td>Volkswagen e-up!</td>
<td>Volkswagen e-up!</td>
</tr>
<tr>
<td>Compressed Natural Gas</td>
<td>Audi A3 g-tron</td>
<td>SEAT León TGI</td>
</tr>
<tr>
<td></td>
<td>Volkswagen Golf TGI</td>
<td>ŠKODA Octavia Sedan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ŠKODA Octavia Combi</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Volkswagen Saveiro</td>
<td>Volkswagen CrossFox</td>
</tr>
<tr>
<td></td>
<td>Volkswagen Golf Rallye</td>
<td>Volkswagen SpaceFox</td>
</tr>
<tr>
<td></td>
<td>Volkswagen Fox Bluemotion</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY

• Tier 3/LEV 3 regulations, combined with the GHG/CAFÉ regulation, will drive many changes to powertrains
• Engine downsizing and down speeding will occur
• Four cylinder gasoline engines will dominate the market and must achieve Bin 20 and Bin 30 performance
• Six cylinder engines must also achieve Bin 30 emissions performance
• Larger engines and diesels must ultimately achieve Bin 50 and 70 performance when the regulations are fully phased-in
• Engine development will be focused on optimized combustion, fuel injection systems, variable valve timing, downsizing and charging
• Transmission technology will continue to evolve
• Increased hybridization of all types and in all market segments
• Continued controversy around PM standards and PM measurement
This presentation contains forward-looking statements and information on the business development of the Volkswagen Group. These statements may be spoken or written and can be recognized by terms such as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words with similar meaning. These statements are based on assumptions relating to the development of the economies of individual countries, and in particular of the automotive industry, which we have made on the basis of the information available to us and which we consider to be realistic at the time of going to press. The estimates given involve a degree of risk, and the actual developments may differ from those forecast.

Consequently, any unexpected fall in demand or economic stagnation in our key sales markets, such as in Western Europe (and especially Germany) or in the USA, Brazil or China, will have a corresponding impact on the development of our business. The same applies in the event of a significant shift in current exchange rates relative to the US dollar, sterling, yen, Brazilian real, Chinese renminbi and Czech koruna.

If any of these or other risks occur, or if the assumptions underlying any of these statements prove incorrect, the actual results may significantly differ from those expressed or implied by such statements.

We do not update forward-looking statements retrospectively. Such statements are valid on the date of publication and can be superceded.

This information does not constitute an offer to exchange or sell or an offer to exchange or buy any securities.